Optimization of Initial Centroids for K-Means Algorithm Based on Small World Network

نویسندگان

  • Shimo Shen
  • Zuqiang Meng
چکیده

K-means algorithm is a relatively simple and fast gather clustering algorithm. However, the initial clustering center of the traditional k-means algorithm was generated randomly from the dataset, and the clustering result was unstable. In this paper, we propose a novel method to optimize the selection of initial centroids for k-means algorithm based on the small world network. This paper firstly models a text document set as a network which has small world phenomenon and then use small-world’s characteristics to form k initial centroids. Experimental evaluation on documents croups show clustering results (total cohesion, purity, recall) obtained by proposed method comparable with traditional k-means algorithm. The experiments show that results are obtained by the proposed algorithm can be relatively stability and efficiency. Therefore, this method can be considered as an effective application in the domain of text documents, especially in using text clustering for topic detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph based Text Document Clustering by Detecting Initial Centroids for k-Means

Document clustering is used in information retrieval to organize a large collection of text documents into some meaningful clusters. k-means clustering algorithm of pratitional category, performs well on document clustering. k-means organizes a large collection of items into k clusters so that a criterion function is optimized. As it is sensitive to the initial values of cluster centroids, this...

متن کامل

Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Selection of Initial Centroids for k-Means Algorithm

Clustering is one of the important data mining techniques. k-Means [1] is one of the most important algorithm for Clustering. Traditional k-Means algorithm selects initial centroids randomly and in k-Means algorithm result of clustering highly depends on selection of initial centroids. k-Means algorithm is sensitive to initial centroids so proper selection of initial centroids is necessary. Thi...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012